Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrochemical characterization and corrosion behavior of an Fe‐Mn‐Si shape memory alloy in simulated concrete pore solutions

Identifieur interne : 000471 ( Main/Exploration ); précédent : 000470; suivant : 000472

Electrochemical characterization and corrosion behavior of an Fe‐Mn‐Si shape memory alloy in simulated concrete pore solutions

Auteurs : W. J. Lee [Suisse, Corée du Sud] ; R. Partovi-Nia [Suisse] ; T. Suter [Suisse] ; C. Leinenbach [Suisse]

Source :

RBID : ISTEX:F88EC5F2FE89B5976DAD8E71ACDC583A1171D5EF

Abstract

The corrosion behavior of an Fe‐17Mn‐6Si‐10Cr‐4Ni‐1(V,C) shape memory alloy was investigated using electrochemical methods with regard to its applications as reinforcing element in pre‐stressed concrete structures. The alloy was tested in three kinds of simulated concrete pore solutions, and open circuit potential and linear polarization resistance were monitored with and without chloride addition. The results were compared with a reference material of conventional structural steel, so called S500 (EN 10149 PT2 standard). It is shown that the shape memory alloy has superior corrosion resistance than the reference material steel S500, and, therefore, can be used as pre‐stressed reinforcing element in concrete without any serious corrosion problem. Several practical issues that can influence the corrosion behavior of the alloy in its use of pre‐stressing reinforcements, such as the effects of strain and surface oxidation by heating, have been also discussed through the electrochemical tests in the simulated concrete pore solutions.
The corrosion behavior of a novel FeMnSi‐based shape memory alloy in three different concrete pore solutions was studied with regard to its applications as reinforcing element in pre‐stressed concrete structures. It could be shown that the shape memory alloy has superior corrosion resistance than the reference material steel S500

Url:
DOI: 10.1002/maco.201508701


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Electrochemical characterization and corrosion behavior of an Fe‐Mn‐Si shape memory alloy in simulated concrete pore solutions</title>
<author>
<name sortKey="Lee, W J" sort="Lee, W J" uniqKey="Lee W" first="W. J." last="Lee">W. J. Lee</name>
</author>
<author>
<name sortKey="Partovi Ia, R" sort="Partovi Ia, R" uniqKey="Partovi Ia R" first="R." last="Partovi-Nia">R. Partovi-Nia</name>
</author>
<author>
<name sortKey="Suter, T" sort="Suter, T" uniqKey="Suter T" first="T." last="Suter">T. Suter</name>
</author>
<author>
<name sortKey="Leinenbach, C" sort="Leinenbach, C" uniqKey="Leinenbach C" first="C." last="Leinenbach">C. Leinenbach</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F88EC5F2FE89B5976DAD8E71ACDC583A1171D5EF</idno>
<date when="2016" year="2016">2016</date>
<idno type="doi">10.1002/maco.201508701</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-RN7D2HT5-H/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001107</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001107</idno>
<idno type="wicri:Area/Istex/Curation">001107</idno>
<idno type="wicri:Area/Istex/Checkpoint">000005</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000005</idno>
<idno type="wicri:doubleKey">0947-5117:2016:Lee W:electrochemical:characterization:and</idno>
<idno type="wicri:Area/Main/Merge">000471</idno>
<idno type="wicri:Area/Main/Curation">000471</idno>
<idno type="wicri:Area/Main/Exploration">000471</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Electrochemical characterization and corrosion behavior of an Fe‐Mn‐Si shape memory alloy in simulated concrete pore solutions</title>
<author>
<name sortKey="Lee, W J" sort="Lee, W J" uniqKey="Lee W" first="W. J." last="Lee">W. J. Lee</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH‐8600, Dübendorf</wicri:regionArea>
<wicri:noRegion>Dübendorf</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Korea Institute of Industrial Technology, Jisa‐dong, Gangseo‐gu, Busan, 618‐230</wicri:regionArea>
<wicri:noRegion>618‐230</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Partovi Ia, R" sort="Partovi Ia, R" uniqKey="Partovi Ia R" first="R." last="Partovi-Nia">R. Partovi-Nia</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH‐8600, Dübendorf</wicri:regionArea>
<wicri:noRegion>Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Suter, T" sort="Suter, T" uniqKey="Suter T" first="T." last="Suter">T. Suter</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH‐8600, Dübendorf</wicri:regionArea>
<wicri:noRegion>Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leinenbach, C" sort="Leinenbach, C" uniqKey="Leinenbach C" first="C." last="Leinenbach">C. Leinenbach</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH‐8600, Dübendorf</wicri:regionArea>
<wicri:noRegion>Dübendorf</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Suisse</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Materials and Corrosion</title>
<title level="j" type="alt">MATERIALS AND CORROSION / WERKSTOFFE UND KORROSION</title>
<idno type="ISSN">0947-5117</idno>
<idno type="eISSN">1521-4176</idno>
<imprint>
<biblScope unit="vol">67</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="839">839</biblScope>
<biblScope unit="page" to="846">846</biblScope>
<biblScope unit="page-count">8</biblScope>
<date type="published" when="2016-08">2016-08</date>
</imprint>
<idno type="ISSN">0947-5117</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0947-5117</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The corrosion behavior of an Fe‐17Mn‐6Si‐10Cr‐4Ni‐1(V,C) shape memory alloy was investigated using electrochemical methods with regard to its applications as reinforcing element in pre‐stressed concrete structures. The alloy was tested in three kinds of simulated concrete pore solutions, and open circuit potential and linear polarization resistance were monitored with and without chloride addition. The results were compared with a reference material of conventional structural steel, so called S500 (EN 10149 PT2 standard). It is shown that the shape memory alloy has superior corrosion resistance than the reference material steel S500, and, therefore, can be used as pre‐stressed reinforcing element in concrete without any serious corrosion problem. Several practical issues that can influence the corrosion behavior of the alloy in its use of pre‐stressing reinforcements, such as the effects of strain and surface oxidation by heating, have been also discussed through the electrochemical tests in the simulated concrete pore solutions.</div>
<div type="abstract" xml:lang="en">The corrosion behavior of a novel FeMnSi‐based shape memory alloy in three different concrete pore solutions was studied with regard to its applications as reinforcing element in pre‐stressed concrete structures. It could be shown that the shape memory alloy has superior corrosion resistance than the reference material steel S500</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
<li>Suisse</li>
</country>
</list>
<tree>
<country name="Suisse">
<noRegion>
<name sortKey="Lee, W J" sort="Lee, W J" uniqKey="Lee W" first="W. J." last="Lee">W. J. Lee</name>
</noRegion>
<name sortKey="Leinenbach, C" sort="Leinenbach, C" uniqKey="Leinenbach C" first="C." last="Leinenbach">C. Leinenbach</name>
<name sortKey="Leinenbach, C" sort="Leinenbach, C" uniqKey="Leinenbach C" first="C." last="Leinenbach">C. Leinenbach</name>
<name sortKey="Partovi Ia, R" sort="Partovi Ia, R" uniqKey="Partovi Ia R" first="R." last="Partovi-Nia">R. Partovi-Nia</name>
<name sortKey="Suter, T" sort="Suter, T" uniqKey="Suter T" first="T." last="Suter">T. Suter</name>
</country>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Lee, W J" sort="Lee, W J" uniqKey="Lee W" first="W. J." last="Lee">W. J. Lee</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000471 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000471 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:F88EC5F2FE89B5976DAD8E71ACDC583A1171D5EF
   |texte=   Electrochemical characterization and corrosion behavior of an Fe‐Mn‐Si shape memory alloy in simulated concrete pore solutions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021